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Effects of turbulence compressibility and
unsteadiness in compression corner flow

By A. Brankovic 1 AND O. Zeman 2

The structure of the separated flow region over a 20 ° compression corner at a

free-stream Mach number of 2.84 is investigated computationally using a Reynolds

averaged Navier Stokes (R.A.N.S.) solver and k - e model. At this Mach number

and ramp angle, a steady-state recirculation region of order /_o is observed, with

onset of a "plateau" in the wall pressure distribution near the corner. At lower

ramp angles, separation is negligible, while at an angle of 24% separation regions of

length 26o are expected. Of interest here is the response of the mathematical model
to inclusion of the pressure dilatation term for turbulent kinetic energy. Compared

with the experimental data of Smits and Muck (1987), steady-state computations

show improvement when the pressure dilatation term is included. Unsteady com-

putations, using both unforced and then forced inlet conditions, did not predict the

oscillatory motion of the separation bubble as observed in laboratory experiments

(see e.g. Dolling and Or 1983). An analysis of the separation bubble oscillation
and the turbulent boundary layer (T.B.L.) frequencies for this flow suggests that
the bubble oscillations are of nearly the same order as the turbulence frequencies,

and therefore difficult for the model to separate and resolve.

1. Introduction

The accurate prediction of turbulent, compressible flow at low supersonic speeds

(Moo _< 3) is one of the most challenging and important problems facing aircraft

engine component designers. For rotating components, flows typically feature un-

steadiness (periodic and non-periodic) and mild compressibility effects, which when
coupled prove difficult to isolate and understand from a fundamental point of view.

Analysis of experimental data (Dolling and Or 1983) reveals that even wind tun-

nel generated flows feature significant flow field unsteadiness, which is difficult to
isolate and control. Analysis of the unsteady pressure fluctuations at the foot of

the separation shock indicates non-periodic, unsteady movement of the shock foot,

with a highly non-Gaussian distribution of the wall pressure fluctuation. Near the

bubble "steady-state" separation point where the wall pressure is highly intermit-
taut and where the pressure fluctuations are most intense, the pressure distribution

was found to be bi-modal. It was found that the characteristic frequency fD of the
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separation bubble oscillations scales on the incoming boundary layer thickness 6o

and free-stream velocity Uo so that

fD6olUo = 0.13.

At this resonant frequency, the bubble leading edge moved forward by up to 1.56o,

doubling its length relative to the steady state value.
Compressibility corrections due to the pressure dilatation for two-equation tur-

bulence models have previously been proposed by Zeman and Coleman (1991) and

Horstman (1987). The Zeman-Coleman model was based on the results of a direct

numerical simulation (DNS) of turbulence in which the mean flow is subjected to

one-dimensional compression; Durbin and Zeman (1992) have formulated a rapid

distortion theory which allows calculation of the pressure-dilatation term analyti-

cally for cases of rapid compression in one, two, or three directions. Vandromme
and Zeman (1992) found that including this term in the k - _ model, using wall

integration boundary conditions, significantly improved predictions for M_ = 2.84

flow over a 24 ° ramp.
In addition to models for the pressure dilatation term, proposals for the dilatation

dissipation and turbulence/pressure-gradient interaction terms, turbulent length-

scale limiters, and low-Reynolds number corrections for turbulent viscosity have
been made for specific features of highly compressible flows (Marvin 1991). Not all

of these terms have been tested in mildly compressible flows. The present effort

focuses on the evaluation of the pressure dilatation contribution in steady-state

predictions of the compression corner flow.
It is noted that model predictions using the standard k - e model tend to underes-

timate flow reattachment lengths even in incompressible flows such as backsteps and

180 ° bend ducts. It is ambitious to expect a single turbulence compressibility term

to compensate for underlying problems with the model. Nevertheless, it is of great
interest to examine whether these terms are important in predicting complex com-

pressible flows, and whether the terms should be generally included in production
R.A.N.S. flow solvers.

2. Computational model and solution method

_. 1 Governing equations

Computations were performed using the time-dependent form of the compressible

R.A.N.S. equations. The continuity, momentum, and energy conservation equations
used are shown below:

Op 0+ = o.o
az¢

(1)

OpUi + (pUiU_ + 60P - ,-ij) = 0.0 (2)

Opet 0 t_ Oh
+ + PUj - cp ) = o.o (3)
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where P = pRT, et = h - -_ -t- _U_ , and 7"ij o=_ - _'3 O=i J"

The equation set is closed using the Boussinesq approximation for the Reynolds
stress tensor:

2
, OUi i.gUj 2 U) -_pki_ij (4)-puiuj = tttt-_z _ + Oz_ -_6,_V. -

where the turbulent viscosity is modeled as:

k2
Pt = C.pf.-- (5)

E

The turbulentkineticenergy,k and itsdissipationrate,e are computed using

modeled transport equations:

Opk OpUjk 0 p, ._Ok
+ 0x, + = p - p' + (6)

---_+ Oz_ (#+--)--=Clfl-kP-C2f2pT (7)

where P = -p(u-i'_)_ (Ui,j + Uj,i), is the production term, and the pressure dilata-

tion term, _ruj, 1 = _, has been added to the R.H.S. of the k equation. Modeling of
this term is the subject of the next section. The constants in the turbulence model

are the standard values recommended by Jones and Launder (1972), and are C_ =

0.09, C1 = 1.44, C_ = 1.92, ak = 1.0, at = 1.30, f_ = 1.0, fl = 1.0 and f2 = 1.0.

_._ The pressure dilatation model

As the boundary layer turbulence passes through the oblique shock generated

by the compression corner, it undergoes a highly rapid compression. This effect is

represented by the rapid pressure-dilatation model developed by Zeman (1991) and

Zeman and Coleman (1991). The model is based on the physics and theories of rapid

distortion and was verified against the DNS of rapidly compressed homogeneous
turbulence.

The pressure dilatation term _ appears on the R.H.S. of the turbulent kinetic

energy equation with positive sign. The rapid contribution to p0 proposed by Zeman
and co-workers to be tested is

R= s,,) (8)

1 U - _/_ijg r • U) is the trace-free mean strain rate, r =where S_j = _( j,i + Ui,j k/e

is the turbulent time scale, and Cdx = --0.004 is the model constant whose value

was determined from the DNS computations. For one of the steady-state test runs,

a value of Cdl = -0.006 was used to test the sensitivity of the separation bubble

size to this coefficient. It is pointed out that the modeled pressure dilatation term

acts as a sink term in the k transport equation and decreases the level of k values

wherever it is numerically significant; this is the case in the vicinity of shocks, where

mean velocity gradients are steep.
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FIGURE 1. Schematic diagram of flow geometry and inlet conditions.

_.$ Numerical method

Computations were done with a code developed at Pratt & Whitney. The equa-

tions are transformed to a curvilinear coordinate system and integrated over arbi-

trary control volumes using a cell-centered grid. A pressure correction procedure is

adapted to generalized coordinates. Second and third-order spatial discretization

schemes are used interchangeably. A second-order backward temporal scheme is
used for the time-dependent calculations.

Inflow conditions consisted of interpolated axial velocity and turbulent kinetic

energy profiles obtained from measurements in Smits and Muck (1987). The inlet

turbulence dissipation rate and the turbulent viscosity distribution were obtained

from the boundary layer distributions given in Hinze (1975). The computational
grid was 241 (axial) x 101 (vertical). Although formal grid independence is not

claimed, the authors' previous experience with such grids for compression corner

flows strongly suggests that the results are close to grid independent. Wall functions

for the momentum and turbulence equations have been used to avoid the time
consuming computations within the viscous sublayer. This required that the first

grid node off the wall lies in the range of 30 < y+ < 300.

3. Steady state results

3.1 Flow structure

A schematic of the inflow conditions and overall flow structure is shown in Fig. 1.

The diagram indicates an oblique shock angle of 20.6 °, corresponding to the pre-

dicted and measured values for this Mach number. Computed contours of the
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Turbulent kinetic energy contours for baseline k - e model.
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FIGURE 3. Turbulent kinetic energy contours for k - e with modeled pressure
dilatation term.

steady-state turbulent kinetic energy are shown in Figs. 2 mad 3. For the baseline

k - e model, Fig. 2, the contour indicates shock formation upstream of the corner,

with a strong, intensely turbulent vortex centered just downstream of the corner.
The boundary layer redevelops downstream of the shock, with the flow relatively

quiescent between the shock and the ramp wall.
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Streamwise velocity profiles in the vicinity of the separation bubble.

, baseline k - _; .... , k - _ with pressure dilatation.

The contour showing the compressible flow model results, Fig. 3, indicates a

similar flow structure to that of the baseline model. Flow separation begins slightly

further upstream in this ease, although this is only discernable through detailed

post-processing of the results.

3._ Mean velocity results

Mean streamwise velocity profiles at three key downstream locations are shown

in Fig. 4. The locations selected for comparison are near the bubble separation

point, the corner, and near the bubble reattachment point. Measurements do not

extend all the way to the wall, hence it is difficult to determine exactly where

separation begins and what is the magnitude of the reverse flow. In each profile,

the model predictions using the pressure dilatation model show minor improvement

in the prediction of axial velocity when compared to the baseline k - e result. The

compressible model shows a more rapid adjustment to the inflection of the velocity

profile at the shock passage location, while the baseline k - e model is noticeably

more sluggish in its response here.

3.3 Wall static pressure

A comparison of wall static pressures is shown in Fig. 5. Experimental data,

the baseline k - e prediction, and compressible k - _ results using values of -0.004

and -0.006 for the Cdl coefficient are shown. The baseline model result (solid line)

severely underpredicts the size of the separation region, recovers to the downstream

pressure value too rapidly, and misses prediction of the pressure plateau indicative
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FIGURE 5. Wall static pressure profile, o , data; --, baseline k - E; .... ,

k - e with pressure dilatation and Cal = -0.004; k - e with pressure dilatation and

Ca1 =-0.006,

of the viscous region in flow separation. The compressible k - e prediction using -

0.004 shows an improvement in the upstream region, with pressure llft-off somewhat

closer to experimental data, although even this pressure profile is characteristic of

weak shock-boundary layer interaction (Delery and Marvin, 1986). As with the

baseline case, the pressure plateau is absent, and recovery appears to be too rapid.

When a value of -0.006 is used, the pressure plateau indicative of strong interaction

has appeared, with the upstream separation point closer to the experimental value.

3.4 Turbulent kinetic energy profiles

The turbulent kinetic energy profiles are shown at a number of downstream loca-

tions along the wall and ramp in Fig. 6. As expected from the form of the pressure

dilatation model, overall k values are damped at each downstream location for the

compressible k - e model relative to the baseline model. Starting with the profile

at the corner, the presence of the shock is noted as a secondary peak in the profile.

The shock amplifies the free-stream turbulence significantly; however, it does not

quite reach the level of turbulence intensity generated by the wail, even in the strong

interaction region immediately downstream of the corner (see Figs. 2 and 3).

4. Unsteady state results

4.1 Unforced boundary layer results

In order to investigate whether the bubble oscillations could be realized simply

by running the code in a time-accurate manner, several cases were run in which

the global time step was varied from 0.1 second to 10 -5 seconds. This sampling
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FIGURE 6. Turbulent kinetic energy profiles at various downstream locations.
--, baseline k - e; .... , k - e with pressure dilatation, Cdl = -0.004.

range was selected as it was estimated that the characteristic bubble frequency for

these inflow conditions is approximately 1300 Hz. Monitoring points were installed

at multiple locations within the separation bubble to monitor axial and vertical ve-

locity. Over the entire sampling range, negligible bubble oscillations were recorded

in the simulations, with no particular resonance at the expected resonant frequency
of 1300 Hz. The reasons for the failure to detect the bubble unsteadiness include

numerical damping, use of wall functions in the momentum and turbulence equa-
tions, or simply the nature of the R.A.N.S. model. As the bubble self-excitation

could not be detected, an attempt was made to excite bubble oscillations through
perturbation of the inlet boundary layer.

_._ Forced boundary layer results

In order to excite the bubble into a resonant frequency, an upstream boundary
layer perturbation of the form:

tr(xo, t) = tr(Xo, o) + o.o5U(Xo,

was applied. This provided a single wavelength oscillation whose amplitude decayed

effectively to zero at the boundary layer edge. The perturbation amplitude of 5.0
was approximately equal to the maximum streamwise turbulence intensity in the

measured dataset of Smits and Muck (1987). To bracket the expected resonant
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frequency at 1300 Hz, forcing frequencies ranging from 200 Hz to 10,000 Hz were
run. Each cycle was sampled 50 times. For a free-stream velocity of 1800 ft/sec, the

maximum perturbation velocity was +/-90 ft/sec. The average response at several

sensing locations in and around the separation bubble is given in the table below:

Forcing Frequency Peak-to-Peak Amplitude
200 Hz +/- 0.252 ft

1000 Hz +/- 0.307 ft

1500 Hz +/- 0.235 ft

2000 Hz +/- 0.596 ft

2500 Hz +/- 0.795 ft

4000 Hz +/- 0.795 ft
5000 Hz +/- 0.686 ft

6000 Hz +/- 0.680 ft

10000 Hz Divergent

lsec

/see
/sec

/see

/see
/SeE

/sec

_sec

The results indicate that only a very mild separation bubble resonance was com-

puted, in the range of 2500 to 4000 Hz, with lower amplitude of oscillation at
lower and higher frequencies. Thus, even with a strong upstream boundary layer

perturbation, bubble resonance proved exceptionally difficult to predict.

4.$ Tirne-scale consideration8

The result of the unsteady, forced inflow investigation raises some important is-

sues regarding the resolution of solvers based on R.A.N.S. equations and the k-e
model used for prediction of unsteady flow. Some insight into this problem can

be gained from a comparison of the governing time scales which characterize the
unsteadiness. Here the comparison is drawn between turbulent boundary layer

(T.B.L.) oscillations in the supersonic compression corner and bluff-body flow oscil-
lations due to vortex shedding which was successfully modeled by Durbin (1994). In

boundary layers, the typical size of the large eddies is order 6, the T.B.L. thickness.

Hence, a probe in this region would measure large-eddy frequencies on the order of

ft "_ U/6, where U is the average speed in the turbulent boundary layer and U ,-_
Uo_ is the free-stream velocity. From the measurements of Dolling and Or (1993), it

is known that the separation bubble oscillation frequency is fo _- 0.13U/6, or only

1/7.7 that of the large-eddy frequency. It is noted that these oscillations could not
accurately be computed using the R.A.N.S. solver, as described above.

In bluff body dynamics, such as the flow over circular, square, or triangular cylin-

ders, the shedding or Strouhal frequency in the wake region is measured as fo

0.2Ucc/L, where U_ = free-stream velocity and L is the cross-sectional dimension,
the diameter in the case of a circular cylinder. This is true for flows where ReD

= UecD/u >_ 100. When such cases are run in an unsteady mode using a com-
putational domain with adequate upstream and downstream length (and unsteady

boundary conditions, if necessary), vortex shedding of the correct frequency is ob-
tained. We know from the T.B.L. case that the large-eddy frequency at separation
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is ft "_ U_/6, where dican be estimated from the relation for flow over circular cylin-

ders as 6o/D "_ O.16/Re_ 7. Thus, for ReD _-- 108, we get $o/D ", 0.16/(106) 1/7 "_
0.0222. We therefore compute a time-scale ratio of ft / fo "" (106)1/7/0.2/0.16 _-

224. Hence, the ratio of turbulence-to-shedding frequencies is 224 / 7.7 ,,, 29.2.

The ratio of characteristic frequencies is thus a key parameter in determining

whether R.A.N.S.-type solvers using the standard k-e turbulence model will resolve
the unsteadiness observed in the experimental data. In the compression corner case,

the ratio of ft / fo was found to be only 7.7, while for bluff body flow, the same
ratio was found to be 224 at ReD = 106, nearly 30 times greater than that for the

compression corner. Based on the limited data, it appears that for ft/fo of order 1,

turbulence-driven oscillations will be submerged in the turbulence model and prove

difficult to resolve. Unsteady turbulence models which adjust properly to both

temporal and spatially local flow conditions may be necessary to resolve this level

of unsteadiness. Large-scale or momentum-driven oscillations of order ft/fo "_ 100
or greater should be relatively easy to compute using unsteady R.A.N.S. solvers,

with the selection of turbulence model not nearly as important in these cases. For

the large body of cases which fall in between these two extremes or for cases which
exhibit multiple levels of unsteadiness such as the rotational, supersonic flow in

gas turbine compressors, a more critical analysis of the importance of time scales

involved and the underlying turbulence model is necessary.

5. Conclusions

The results indicate that the compressibility correction term represented by the

pressure dilatation model of Zeman (1991) improves the velocity profiles predictions

in the vicinity of the separation bubble to a small degree. Wall pressure predictions

were also slightly improved. The term generally had the effect of damping turbulent
kinetic energy as was seen in a series of k profiles at various downstream locations.

Increasing the value of the modeled coefficient Ca1 from -0.004 to -0.006 had the

effect of increasing the separation bubble size, resulting in a form of the pressure

plateau reported in the steady-state wall pressure results for ramp angles of 20 °

or greater at Mo¢ = 2.84. Unsteady runs with and without upstream boundary
layer perturbations did not predict the measured separation bubble oscillations. An

analysis of the characteristic time scales for this problem revealed that the expected

bubble oscillation frequency was less than the characteristic large-eddy frequency,
which proved numerically difficult for the R.A.N.S. solver and k-e model to resolve.

It was postulated that the condition ft/fo >> 1 must be met for the code to easily

compute unsteadiness in the flow. An example from bluff body dynamics was used

to illustrate this point.
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